Refine Your Search

Topic

Author

Search Results

Technical Paper

Reducing the Risk of Driver Injury from Common Steering Control Devices in Frontal Collisions

1999-03-01
1999-01-0759
Steering control devices are used by people who have difficulty gripping the steering wheel. These devices have projections that may extend up to 14 cm toward the occupant. Testing indicated that contact with certain larger steering control devices with tall rigid projections could severely injure a driver in a frontal collision. In order to reduce this injury risk, an alternative, less injurious design was developed and tested. This design, which included replacing unyielding aluminum projections with compliant plastic ones, produced significantly lower peak contact pressure and less damage to the chest of a cadaver test subject, while maintaining the strength necessary to be useful.
Technical Paper

Improved Finite Element SID for In-Vehicle Simulation

1999-03-01
1999-01-0716
Finite element (FE) modeling is becoming an integral approach to the study of crashworthiness of vehicle structures and occupant interaction with the structure. Crashworthiness assessment of a vehicle using numerical techniques necessitates the development of not only an accurate and representative vehicle model, but also a robust occupant model. This paper describes the development of mathematical models to perform the complete side impact simulation. The fully developed model can be used to evaluate occupant compartment intrusion and to assess occupant protection countermeasures in various side impact scenarios. A baseline finite element model of the side impact dummy (SID) used in the United States safety regulation, FMVSS 214, Side Impact Protection [7], was refined and calibrated using dynamic material and sub-system test data. Lower extremity geometry was reverse engineered and suitable material models and joints were incorporated in the revised model.
Technical Paper

NHTSA’s Vehicle Compatibility Research Program

1999-03-01
1999-01-0071
The National Highway Traffic Safety Administration (NHTSA) is conducting a research program to investigate the crash compatibility of passenger cars, light trucks and vans (LTV’s) in vehicle-to-vehicle collisions. NHTSA has conducted a series of eight full-scale vehicle-to-vehicle crash tests to evaluate vehicle compatibility issues. Tests were conducted using four bullet vehicles representing different vehicle classes striking a mid-size sedan in both side and oblique frontal crash configurations. The test results show a good correlation between vehicle aggressivity metrics and injury parameters measured in the struck car for the frontal offset tests, but not for the side impact tests.
Technical Paper

The New Car Assessment Program Has It Led to Stiffer Light Trucks and Vans over the Years?

1999-03-01
1999-01-0064
Since model year 1983, one hundred and seventy five light trucks, vans, and sport utility vehicles (LTVs) have been included in the New Car Assessment Program (NCAP) frontal crash tests. In this frontal test, vehicles are crashed at 35 mph such that the entire front impacts against a rigid, fixed barrier. Instrumented anthropometric dummies are placed in the driver and right front passenger seats. Accelerometers are placed on the vehicle to record the response of the structure during the crash. A number of recent papers have examined the compatibility of LTVs and cars in vehicle-to-vehicle collisions. The studies in these papers, generally, consider three factors for vehicle-to-vehicle compatibility: (1) mass, (2) stiffness, and (3) geometry. On June 5, 1998, Transport Canada and the National Highway Traffic Safety Administration held a forum entitled “Transport-NHTSA International Dialogue on Vehicle Compatibility,” in Windsor, Canada.
Technical Paper

Reverse Engineering Method for Developing Passenger Vehicle Finite Element Models

1999-03-01
1999-01-0083
A methodology to develop full-vehicle representation in the form of a finite element model for crashworthiness studies has been evolved. Detailed finite element models of two passenger vehicles - 1995 Chevy Lumina and 1994 Dodge Intrepid have been created. The models are intended for studying the vehicle’s behavior in full frontal, frontal offset and side impact collisions. These models are suitable for evaluating vehicle performance and occupant safety in a wide variety of impact situations, and are also suitable for part and material substitution studies to support PNGV (Partnership for New Generation of Vehicles) research. The geometry for these models was created by careful scanning and digitizing of the entire vehicle. High degree of detail is captured in the BIW, the front-end components and other areas involved in frontal, frontal offset and side impact on the driver’s side.
Technical Paper

Upper Neck Response of the Belt and Air Bag Restrained 50th Percentile Hybrid III Dummy in the USA's New Car Assessment Program

1998-11-02
983164
Since 1994, the New Car Assessment Program (NCAP) of the National Highway Traffic Safety Administration (NHTSA) has compiled upper neck loads for the belt and air bag restrained 50th percentile male Hybrid III dummy. Over five years from 1994 to 1998, in frontal crash tests, NCAP collected upper neck data for 118 passenger cars and seventy-eight light trucks and vans. This paper examines these data and attempts to assess the potential for neck injury based on injury criteria included in FMVSS No. 208 (for the optional sled test). The paper examines the extent of serious neck injury in real world crashes as reported in the National Automotive Sampling System (NASS). The results suggest that serious neck injuries do occur at higher speeds for crashes involving occupants restrained by belts in passenger cars.
Technical Paper

Comparative Performance Testing of Passenger Cars Relative to Fmvss 214 and the Ue 96/Ec/27 Side Impact Regulations: Phase I

1998-05-31
986168
Based on a long recognized need, the National Highway Traffic Safety Administration (NHTSA) has begun to reexamine the potential for international harmonization of side impact requirements. To this end, NHTSA, as directed by the U.S. Congress, has recently submitted a report to the Congress on the agency plans for achieving harmonization of the U.S. and European side impact regulations. The first phase of this plan involves crash testing vehicles compliant to FMVSS 214 to the European Union side impact directive 96/27/EC. This paper presents the results to date of this research. The level of safety performance of the vehicles based on the injury measures of the European and U.S. side impact regulations is assessed.
Technical Paper

AN ANALYSIS OF NCAP SIDE IMPACT CRASH DATA

1998-05-31
986235
Since 1990, the National Highway Traffic Safety Administration (NHTSA) implemented a dynamic side impact compliance test. This compliance test, Federal Motor Vehicle Safety Standard (FMVSS) No. 214, is a nearly right angle side impact in which the striking vehicle moves at 53.6 kmph into the struck vehicle. In 1997, NHTSA began testing passenger cars in side impact in the New Car Assessment Program (NCAP). In the USA NCAP side impact, the striking vehicle is towed at a 8 kmph higher speed than in the compliance test. An analysis has begun on the data from the first NCAP side impact tests, thirty-two in number. In the crashes, accelerometers were installed in the door and door frames of the struck vehicle. Using the accelerometers on the vehicle structure and in the side impact dummy, the crash event was investigated. One tool used in the investigation was the velocity-versus-time diagram.
Technical Paper

A Comparison of Thermoplastic Composite vs.Conventional-Steel Instrument Panel Systems for Side-Impact Energy Management

1998-02-23
980962
This paper discusses the contribution of instrument panel systems in a European side-impact event. Systems studied include a conventional steel cross-car beam system and a glass-mat thermoplastic (GMT) composite system, evaluated in a body-in-white structure. A thermoplastic composite instrument panel system offers mass, cost, and recycling benefits, but its performance vs. a conventional steel cross-car beam system merited an engineering investigation. The comparison methodology used included a nonlinear dynamic side impact study with a moving, deformable barrier developed according to European Economic Community (EEC) standards. A finite-element model used in this study simulated the body-in-white structure, barrier structure and instrument panel systems. The resulting data include velocity, displacement and energy absorption levels of various components of the respective instrument panel systems.
Technical Paper

Frontal Air Bag Deployment in Side Crashes

1998-02-23
980910
NHTSA conducted seventy-six side impact FMVSS No. 214 compliance tests from 1994 through 1997. The compliance tests are nearly right angle side impacts with low longitudinal components of change of velocity (Δv). Frontal air bag deployments were found to have occurred for 34% of the driver bags and 32% of the front passenger bags in these compliance-tested passenger cars. In 1997, NHTSA began testing passenger cars 'in side impact in the New Car Assessment Program (NCAP). The NCAP crash tests are conducted at a higher speed than the compliance tests. The cars in the NCAP side impact tests also had low longitudinal components of Δv. Approximately 40% of the twenty-six passenger cars tested in the 1997 Side Impact NCAP had their frontal air bags deploy. Real world crash data were examined to determine if frontal air bags are deploying in right angle side impacts on the roads of the US.
Technical Paper

RAID - An Investigative Tool to Study Air Bag/Upper Extremity Interactions

1997-02-24
970399
A study of frontal collisions using the NASS data base showed that there were four times as many arm injuries to belt restrained drivers who had an air bag deploy than for the drivers who were simply belted. By far, the distal forearm/hand was the most commonly injured region. Hard copy review identified two modes of arm injury related to the deploying air bag: 1) The arm is directly contacted by the air bag module and/or flap cover, and 2) The arm is flung away and contacts an interior car surface. Based on the field studies, a mechanical device called the Research Arm Injury Device (RAID) was fabricated to assess the aggressivity of air bags from different manufacturers. Results from static air bag deployment tests with the RAID suggested that the RAID was able to clearly distinguish between the aggressive and non-aggressive air bags. Maximum moments ranging between 100 Nm and 650 Nm, and hand fling velocity ranging between 30 and 120 km/h were measured on the RAID in these tests.
Technical Paper

Improving Occupant Protection Systems in Frontal Crashes

1996-02-01
960665
In the United States, air bags will be required in all passenger cars and light trucks under Federal Motor Vehicle Safety Standard (FMVSS) No. 208, Occupant Crash Protection. Even after full implementation of driver and passenger air bags as required by FMVSS No. 208, frontal impacts will still account for up to 8,000 fatalities and 120,000 moderate to critical injuries (i.e., injuries of AIS ≥ 2) [1]. The National Highway Traffic Safety Administration (NHTSA) has an ongoing research program to address these fatalities and injuries and provide a basis for the possible future upgrade of FMVSS No. 208. This effort includes developing supplementary test procedures for the evaluation of occupant injury in higher severity crashes, developing improved injury criteria including criteria for assessing injuries to additional body regions, and evaluating the injuries associated with occupant size [2, 3 and 4].
Technical Paper

Evaluation of a Proposed Hybrid III Hip Modification

1995-11-01
952730
A proposed modification to the Hybrid III 50th percentile male dummy upper femur appears to reduce the chest response problems resulting from femur-pelvis interaction in test exposures more severe than Standard No. 208 testing. When compared to overall repeatability of tests, the modification did not change other dummy response measurements appreciably. The femur-pelvis interaction problem, referred to as “hip lock”, was thought to occur in certain vehicles when the femurs of a passenger side dummy impacting only an air bag bottomed out against the pelvis structure. If metal-to-metal contact occurred, excessive load could be transferred to the chest, leading to elevated chest responses. The most pertinent signs of hip lock occurring appear to be a large, sharply pointed z chest acceleration, and a distinct positive component of the lumbar spine z force following the main negative component.
Technical Paper

On the Synergism of the Driver Air Bag and the 3-Point Belt in Frontal Collisions

1995-11-01
952700
The number of passenger vehicles with combined 3-point belt/driver air bag restraint systems is steadily increasing. To investigate the effectiveness of this restraint combination, 48 kph frontal collisions were performed with human cadavers. Each cadaver's thorax was instrumented with a 12-accelerometer array and two chest bands. The results show, that by using a combined standard 3-point belt (6% elongation)/driver air bag, the thoracic injury pattern remained located under the shoulder belt. The same observation was found when belts with 16% elongation were used in combination with the driver air bag. Chest contours derived from the chest bands showed high local compression and deformation of the chest along the shoulder belt path, and suggest the mechanism for the thoracic injuries.
Technical Paper

The New Car Assessment Program:Five Star Rating System and Vehicle Safety Performance Characteristics

1995-02-01
950888
In the New Car Assessment Program (NCAP), beginning with the model year 1994 vehicles, the National Highway Traffic Safety Administration (NHTSA) developed and adopted a simplified nonnumeric format for presenting the comparative frontal crashworthiness safety information to consumers. This paper presents the basis for the development of this “star rating” system. The injury probability functions which are used for the star rating system are also applied to the results of the recent NCAP real-world correlation studies and a review of these studies is given. The safety performance for restrained occupants as measured in NCAP is dependent on several parameters which include: the design of the restraint system, the maintenance of the integrity of the occupant space, and the energy management performance of the front structure.
Technical Paper

Determination of the Significance of Roof Crush on Head and Neck Injury to Passenger Vehicle Occupants in Rollover Crashes

1995-02-01
950655
A comparative study between belted rollover occupants who did and did not receive head injuries from roof contact was conducted using the National Accident Sampling System (NASS) database. The main objective was to determine if headroom reduction increases the risk of head injury. Headroom was determined for 155 belted occupants involved in rollover crashes of vehicles which were then weighted to make them representative of national estimates. Results showed that headroom was reduced more in those crashes where the occupant had head injuries than in cases where there were no head injuries. It was concluded that the risk of head injury increased with reduced headroom. Furthermore, it was observed that when the initial headroom was higher, the incidence of head injury was reduced.
Technical Paper

The New Car Assessment Program - Historical Review and Effect

1994-03-01
941052
This report is a condensed version of the December 1993 New Car Assessment Program (NCAP) report to Congress and provides: an historical review and future goals for NCAP. the results of an 18-month study to assess consumer and media needs in understanding and promoting the use of NCAP data. This included consumer focus groups and media studies. These studies indicated that consumers and the media desire comparative safety information on vehicles, a simplified NCAP format to better understand and utilize the crash test results, and would like to see NCAP expanded to include other crash modes. studies of real-world crashes versus NCAP crash tests. These studies conclude that NCAP test conditions approximate real-world crash conditions covering a major segment of the frontal crash safety problem and that there is a significant correlation between NCAP results and real-world fatality risks for restrained drivers.
Technical Paper

Designing Energy Absorbing Steering Wheels Through Finite Element Impact Simulation

1993-08-01
931844
Light metal alloys based on magnesium and aluminum are increasingly being pursued for various vehicle interior applications because of distinct advantages such as weight savings and potential parts consolidation. One such application of light metal alloys is the steering wheel, which is an important component of a safety system that is comprised of the driver-side airbag, steering wheel, the steering column and its attachment bracketry to the instrument panel and the vehicle body structure. For the airbag to function effectively as a restraint during a frontal crash, the steering wheel has to provide adequate support. In addition to the steering column which is designed to absorb energy, the wheel can also function as an energy absorber if so designed. One way of achieving this energy absorption is through plastic deformation of the wheel. Adverse material characteristics, however, make the energy absorbing steering wheel design, using light metal alloys, a sizeable challenge.
Technical Paper

Finite Element Modeling of the Side Impact Dummy (SID)

1993-03-01
930104
A new numerical model of the side impact dummy (SID) was developed based on the DYNA3D finite element code. The model includes all of the material and structural details of SID that influence its performance in crash testing and can be run on an engineering work station in a reasonable time. This paper describes the development of the finite element model and compares model predictions of acceleration and displacements with measurements made in SID calibration experiments. Preliminary parameter studies with the model show the influence of material properties and design on the measurements made with the SID instrument.
Technical Paper

Strategies for Passenger Car Designs to Improve Occupant Protection in Real World Side Crashes

1993-03-01
930482
The National Highway Traffic Safety Administration (NHTSA) upgraded the side impact protection requirement in Federal Motor Vehicle Safety Standard (FMVSS) No. 214 and added dynamic requirements to reduce the likelihood of thoracic injuries in side crashes. As part of the agency's research in developing the requirements of the standard, NHTSA developed a mathematical model for simulation of side impacts. This paper investigates the overall safety performance, based on Thoracic Trauma Index (TTI) as the criteria for passenger cars in real world side crashes, with the aid of the simulation model. A Thoracic Trauma Index Factor (TTIF) is utilized to compare relative safety performance of passenger cars under various conditions of impact. The concept of relating energy dissipation in various side structure and padding countermeasures is used to develop a family of curves that are representative of a design platform.
X